GOVT. POLYTECHNIC BOLANGIR LESSON PLAN

Discipline : ELECTRICAL ENGG.	Semester: 5th Sem	Name of the Teaching Faculty : Suryamani Sahoo			
Subject : Digital Etc &M.P	No. of Days / per week class allotted :	Semester From date : 01.09.2020 To Date : 31.12.2020 No. of Weesks : 15			
Week	Class Day	Topics			
	1st	1. BASICS OF DIGITAL ELECTRONIC 1.1 Binary, Octal, Hexadecimal number systems and compare with Decimal system.			
	2nd	1.2 Binary addition, subtraction, Multiplication and Division.			
1ST SEPT	3rd	1.3 1's complement and 2's complement numbers for a binary			
	4th	1.4 Subtraction of binary numbers in 2's complement method.			
	5th	1.5 Use of weighted and Un-weighted codes & write Binary equivalent number			

2ND SEPT	1st	1.6 Importance of parity Bit.	
	2nd	Problems discussion	
	3rd	1.7 Logic Gates: AND, OR, NOT, NAND, NOR and EX-OR gates with	
		truth table.	
	4th	1.8 Realize AND, OR, NOT operations using NAND, NOR gates.	
	5TH	Revision	

	1st	1.9 Different postulates and De-Morgan's theorems in Boolean	
		algebra.	
	2nd	1.10 Use Of Boolean Algebra For Simplification Of Logic Expression	
3RD SEPT	3rd	1.11 Karnaugh Map For 2,3,4 Variable, Simplification Of SOP And	
		POS Logic Expression Using K-Map	
	4th	1.11 Karnaugh Map For 2,3,4 Variable, Simplification Of SOP And	
	5th	1.11 Karnaugh Map For 2,3,4 Variable, Simplification Of SOP And	

4TH SEPT	1st	COMBINATIONAL LOGIC CIRCUIT 2.1 Give the concept of	
		combinational logic circuits.	
	2nd	2.2 Half adder circuit and verify its functionality using truth table.	
	3rd	2.3 Realize a Half-adder using NAND gates only and NOR gates only.	
	4th	2.4 Full adder circuit and explain its operation with truth table.	
	5th	Problems discussion	

	I 1st	2.5 Realize full-adder using two Half-adders and an OR – gate and write truth table
--	-------	---

_					
1ST OCT	2nd	2.6 Full subtractor circuit and explain its operation with truth table.			
131 001	3rd	2.6 Full subtractor circuit and explain its operation with truth table.			
	4th	2.7 Operation of 4 X 1 Multiplexers and 1 X 4 demultiplexer			
	5th	2.7 Operation of 4 X 1 Multiplexers and 1 X 4 demultiplexer			
	1st	Problems discussion			
	2nd	Revision			
2ND OCT	3rd	2.8 Working of Binary-Decimal Encoder & 3 X 8 Decoder.			
	4th	2.8 Working of Binary-Decimal Encoder & 3 X 8 Decoder.			
	5th	2.9 Working of Two bit magnitude comparator.			
	1st	SEQUENTIAL LOGIC CIRCUITS3.1 Give the idea of Sequential logic circu			
	2 1	3.2 State the necessity of clock and give the concept of level clocking			
200.007	2nd	and edge triggering,			
	3rd	3.3 Clocked SR flip flop with preset and clear inputs.			
3RD OCT	4+1-	3.5 Construct level clocked JK flip flop using S-R flip-flop and explain			
	4th	with truth table			
	F.H.	3.6 Concept of race around condition and study of master slave JK			
	5th	flip flop.			
	1st	3.7 Give the truth tables of edge triggered D and T flip flops and			
		draw their symbols.			
	2nd	3.8 Applications of flip flops. 3.9 Define modulus of a counter			
467.11614	3rd	3.10 4-bit asynchronous counter and its timing diagram.3.11			
1ST NOV		Asynchronous decade counter.			
	4th	3.12 4-bit synchronous counter.3.13 Distinguish between			
	-1011	synchronous and asynchronous counters.			
	5th	3.14 State the need for a Register and list the four types of registers.			
		3.15 Working of SISO, SIPO, PISO, PIPO Register with truth table			
	1st	using flip flop.			
	2nd	Problems discussion			
2ND NOV	3rd	Problems discussion			
	4th	Revision			
	5th	Revision			
		, review.			
	1	8085 MICROPROCESSOR: 4.1 Introduction to			
	1st	Microprocessors, Microcomputers			
	2nd	4.2 Architecture of Intel 8085A Microprocessor and description of			
3RD NOV		each block.			

4.3 Pin diagram and description.

4.4 Stack, Stack pointer & stack top

3rd

4th

	5th	4.5 Interrupts			
	301	4.5 interrupts			
	1st	4.6 Opcode & Operand,			
		4.7 Differentiate between one byte, two byte & three byte			
	2nd	instruction with example.			
		4.7 Differentiate between one byte, two byte & three byte			
4TH NOV	3rd	instruction with example.			
		4.7 Differentiate between one byte, two byte & three byte			
	4th	instruction with example.			
	5th	4.8 Instruction set of 8085 example			
		·			
	1st	4.8 Instruction set of 8085 example			
	2nd	4.9 Addressing mode			
1ST DEC	3rd	4 .10 Fetch Cycle, Machine Cycle, Instruction Cycle, T-State			
	4th	4 .10 Fetch Cycle, Machine Cycle, Instruction Cycle, T-State			
	5th	4.11 Timing Diagram for memory read, memory write, I/O read, I/O			
		T			
	1st	4.11 Timing Diagram for memory read, memory write, I/O read, I/O			
	2nd	4.12 Timing Diagram for 8085 instruction			
2ND DEC	3rd	4.13 Counter and time delay.			
	4th	4. 14 Simple assembly language programming of 8085.			
	5th	Revision			
		E INTERFACING AND SUPPORT CHIRS.			
	1st	5. INTERFACING AND SUPPORT CHIPS5.1 Basic			
		Interfacing Concepts, Memory mapping .			
	2nd	5.1 Basic Interfacing Concepts, I/O mapping			
		5.2 Functional block diagram and description of each block of			
3RD DEC	3rd	Programmable peripheral interface			
		Intel 8255			
	4th	5.2 Functional block diagram and description of each block of			
		Programmable peripheral interface intel 8255			
	5th	5.2 Functional block diagram and description of each block of			
		Programmable peripheral interface intel 8255			
	1st	5.3 Application using 8255: Seven segment LED display			
4TH DEC	2nd	5.3 Application using 8255: Seven segment LED display 5.3 Application using 8255: , Square wave generator			
	2110	5.3 Application using 8255: , Traffic light			
	3rd	Controller			
	4th	Revision			
	5th	Revision			
	שנו	INCVISION			

